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Abstract. Tropospheric ozone time series consist of the effects of various scales of motion, from meso to large timescales, 

which is often challenging for global models to capture. This study uses two global datasets, namely the reanalysis and daily 

forecast of the Copernicus Atmospheric Monitoring Service (CAMS), to assess the capability of these prodcuts in presenting 

ozone’s features on regional scales. We obtained 17 relevant meteorological and several pollutant species, such as O3, CO, 10 
NOx, etc., from CAMS. Furthermore, we employ in situ measured ozone at 27 urban stations over Iran for the year 2020. We 

decompose the datasets into three spectral components, i.e., short (S), medium (M), and long (L) terms. To cope with the 

scaling issue between the measured data and the CAMS’ products, we downscale the datasets using a Long Short-Term 

Memory (LSTM) neural network. We only evaluate the S and M terms of the models against those of the observed datasets 

for all stations. Results show correlation coefficients larger than 0.7 for S and about 0.95 for M in both models. It turns out 15 
that both datasets demonstrate more correspondence precision for the M component than that for the S. The performance of 

the models varies across cities, for example, the highest error is for areas with high emissions of O3 precursors. The robustness 

of the results is confirmed by performing an additional downscaling method.  

1 Introduction 

Near-surface ozone (O3), or tropospheric ozone at ground level, is a secondary air pollutant that deteriorates human health and 20 
plants via damaging respiratory systems (Bell et al., 2006; Fowler et al., 2009; Mills et al., 2011; Malley et al., 2015). Exposure 

to high concentrations of air pollution, especially O3, leads to premature deaths, in particular for those suffering from 

asthma disease. Many efforts have been made to study ozone and its precursors in Iran, which suffers from severe ambient air 

pollution (Lelieveld et al., 2009; Bidokhti et al., 2016; Faridi et al., 2018; Yousefian et al., 2020). As an example, Hadei et al. 

(2017) reported a total of 1363 premature deaths attributed to O3 in Tehran within three years, 2013–2016. Long-term 25 
exposures to ambient O3 are responsible for 173 deaths from respiratory disease in Ahvaz for the year 2012 (Goudarzi et al., 

2015). 
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Ozone is either transported naturally from the stratosphere or produced in situ by photochemical oxidation of ozone’s precursor 

gases such as nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), methane (CH4), or carbon 

monoxide (CO) in the presence of sunlight (Crutzen 1974; Monks et al., 2015; Cooper et al., 2014). The ozone level is not 30 
only a function of its precursor’s emissions but also of meteorological conditions that influence the evolution of emissions and 

photochemical products (Bloomer et al., 2009; Li et al., 2020). It has been shown that not only local emissions and winds but 

also synoptic conditions control the ozone levels over Iran (Borhani et al., 2021; Zohdirad et al., 2022; Jafari Hombari and 

Pazhoh, 2022). Several synoptic systems, which cause the high levels of ozone over Tehran, have been recognized and 

classified in a study by Khansalari et al. (2020) and Lashkari et al. (2020).  35 
Reanalysis data provides a global picture of past weather and climate. These data are constructed by combining atmospheric 

observations such as satellite, radar, and in situ measurements with a detailed computer simulation of the atmosphere, using 

data assimilation technique. Reanalysis data have been widely used as an initial condition for the daily forecast of the 

atmosphere or boundary conditions in regional models, for the study of climate change, and as proxies to complement 

insufficient in situ measurements. In recent years, the Copernicus Atmosphere Monitoring Service (CAMS) has been mainly 40 
developed to assimilate the chemical compositions such as tropospheric ozone and aerosol concentrations, but it also holds 

outputs for several meteorological variables (Innes et al., 2019). Several studies have evaluated CAMS reanalysis (hereafter 

CAMSRA) products and compared them with other reanalysis datasets and a control run (no assimilation). As an example, an 

intercomparison of tropospheric ozone from seven reanalysis datasets in East Asia has reported that CAMSRA depicts more 

reasonable spatial-temporal variability than other datasets (Park et al., 2020). They also show the suitability of CAMSRA for 45 
the study of local tropospheric ozone on seasonal to interannual timescales but the inadequacy of that to study long-term trends. 

Results of the study by Huijnen et al. (2020) reveal the ability of CAMSRA to reproduce background O3 in terms of mean and 

variability on various timescales such as synoptic, seasonal, etc. Several studies mention that the performance of CAMSRA 

differs depending on the region (Wang et al., 2020; Wagner et al., 2021). For instance, it has been shown that there is more 

agreement between CAMSRA and observations over Europe than in the Tropics (Errera et al., 2021). CAMS also provides 50 
daily forecasts (hereafter CAMSFC), which have a finer horizontal resolution and a larger number of vertical model levels 

than CAMSRA. System upgrades and verifications of CAMSFC are reported in several studies (Schulz et al., 2021; Eskes et 

al., 2021). A recent validation based on various observations shows that, in terms of bias, CAMSFC overestimates surface 

ozone values at most of the stations (Sudarchikova et al., 2021). However, it shows significant correlations across most of the 

stations, e.g., in China. 55 
Despite many evaluation studies of CAMSRA and CAMSFC in different parts of the globe, less attention has been given so 

far to Iran, which is a country with a complex topography and diverse meteorological systems that contribute to the ozone 

level in this area. This study aims to address two questions: (1)  how are the performances of CAMSRA and CAMSFC in 

simulating ozone over this region? (2) To what extent can downscaled CAMS datasets be used to study surface ozone at a city 

scale? To compensate for the limited spatial resolutions of the models, we downscale the CAMS ozone using the Long Short-60 
Term Memory (LSTM) technique. The data are compared with the measured ozone data at 27 air quality monitoring 

https://doi.org/10.5194/gmd-2023-226
Preprint. Discussion started: 2 January 2024
c© Author(s) 2024. CC BY 4.0 License.



3 
 

stations distributed over different parts of the country. That allows us to assess the CAMS over diverse zones, e.g., a highly 

populous and polluted area vs. a small and desert-like town. 

A detailed description of the datasets used in this study is presented in Sect. 2. The methodology is explained in Sect. 3, and 

the results are shown in Sect. 4. The discussion is presented in Sect. 5, and the paper ends with the conclusion's remarks in 65 
Sect. 6.  

2 Description of Data 

2.1 CAMS products 

This study uses two data products, namely CAMSRA and CAMSFC, that have been produced by the ECMWF in the 

framework of the CAMS. These datasets specific to tropospheric ozone analysis are introduced in the following subsections. 70 
An overview of the main differences and similarities between both products is given in Table 1. For more details on other 

aspects, the reader is referred to the references. 

2.1.1 CAMS reanalysis (CAMSRA) 

This product is the latest (state-of-the-art) global CAMS reanalysis dataset of atmospheric compositions. They are produced 

using four-dimensional variation (4D-Var) as an assimilation technique. The chemistry module of the CAMS relies on the 75 
IFS(CB05) tropospheric chemistry mechanism with 52 species and 130 reactions (Huijnen et al., 2010; Flemming et al., 2015; 

Huijnen et al., 2020). Dry deposition velocities are derived from the SUMO model (Michou et al., 2004). Anthropogenic 

emissions are based on the MACCity inventory (Granier et al., 2011), with modified wintertime CO emissions over North 

America and Europe (Stein et al., 2014). Monthly mean biogenic VOC emissions are derived offline from MEGAN (Guenther 

et al., 2006), using NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERAA) reanalyzed 80 
meteorological fields (Sindelarova et al., 2014). Daily biomass-burning emissions originating from the Global Fire 

Assimilation System, version 1.2 (GFASv1.2, Kaiser et al., 2012) are inferred from satellite observations of fire activities. The 

meteorological model consists of the given version of the Integrated Forecast System (IFS), i.e., CY42R1, with an interactive 

ozone and aerosol radiation scheme. It is noteworthy that newer versions of data have been frequently adopted in CAMS. 

Comparing to the previous atmospheric chemistry CAMS reanalysis data, CAMSRA has a finer horizontal resolution of 80 85 
km with 60 vertical model levels, with the top level at 0.1 hPa. CAMSRA covers data for the period of January 2003 to 

December 2021. The data are archived in 3 hourly time intervals. Hereafter, the ozone from this dataset is called O3RA. 

2.1.2 CAMS forecast (CAMSFC) 

In addition to the aforementioned datasets, CAMSFC issues (and produces) a daily global forecast of atmospheric compositions 

twice a day, which is initialized from analysis at 00:00 and 12:00 UTC. The forecast consists of more than 50 chemical species 90 
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and seven different aerosols. It provides outputs for several meteorological variables as well. Compared to CAMSRA, in 

CAMSFC only the initial conditions of each forecast are obtained from reanalysis datasets, i.e., combining the previous 

forecasts with satellite observations using the 4D-VAR data assimilation technique. CAMSFC uses an atmospheric model to 

determine the evolution of the concentration of all species over time for the next five days. Apart from the required initial state, 

it also uses inventory-based or observation-based emissions estimates as boundary conditions at the surface. Biogenic 95 
emissions originate from CAMS-GLOB-BIO v1.1, which is calculated from the MEGAN v2.1 model using ERA-Interim 

meteorology (Sindelarova et al., 2022). Monthly average of anthropogenic emissions is derived from the CAMS_GLOB_ANT 

v2.1 inventory based on a combination of EDGAR v4.3.2x and CEDS emissions (Granier et al., 2019). Biomass burning injects 

from GFAS. Dry depositions of trace gases are calculated online. Sulfur species, nitrate, and ammonium are coupled between 

chemistry and aerosol schemes. In contrast to the CAMSRA, CAMSFC is available at a finer horizontal resolution of 40 km. 100 
CAMSFC is upgraded regularly, e.g., once a year, during which the model’s resolution can change or new species can be 

added. From 9 July 2019, CAMSFC uses the assimilation system’s IFS CY46R1, in which the vertical model levels have been 

upgraded from 60 to 137. Details of other upgrades to this system can be found in Haiden et al. (2019) and Basart et al. (2019). 

IFS CY47R1 was used on 6 October 2020, with some upgrades in observations, emissions, and model changes (Eskes et al., 

2021; Sudarchikova et al., 2021). The temporal coverage of the CAMSFC is from 2015 to the present, with temporal resolutions 105 
of 1 hourly (only for surface fields) and 3 hourly. This study uses 3 hourly forecast fields from 00:00 UTC up to 24 hours. 

Hereafter, the ozone from this dataset is called O3FC.    

2.2 In situ measurement datasets 

Surface-based measurements of ozone were extracted from the Tehran air quality control portal, which is publicly available, 

for 21 stations. A couple of the stations contain no data records, and the data sparsity at the stations differs from year to year. 110 
Hourly time series of surface ozone for other cities are not accessible to the public. They were obtained from the Iranian 

Environmental Protection Organization for 54 air quality monitoring stations. We added the Geophysics station, which is 

located at the Geophysics Institute, University of Tehran, Tehran. This station measures surface ozone along with several other 

variables such as air temperature, nitrogen oxides, wind, total ozone column, etc. Most of the air quality monitoring stations 

in Iran are installed in the cities, as they are aimed for the public health report. There is no information about stations’ type or 115 
availability of the data at background sites. To have a common quality, the validity of the data was checked by performing a 

few statistical tests, such as (1) range test: verifies if the values are within the acceptable range limits (Zahumensky, 2004; 

Taylor and Loescher, 2013); (2) constant value test: checks the required variability among successive values (Zahumensky, 

2004); and (3) discontinuity test: identifies suspicious data points before and ahead of the discontinuities (Zurbenko et al., 

1996; Gerharz et al., 2011). We use the stations containing data for the year 2020, where more than 50 % of the data is available 120 
for each month. Table A1 lists the names and geographical locations of the stations, of which the first 22 are ordered based on 

the stations’ latitudes. In Table A1, there is a number along with the stations’ names, hereafter, the stations are referred with 
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these numbers. To include more stations in the analysis, we consider five more stations in Table A1, i.e., from 23 to 27, which 

only one or two months of the year 2020 contain less than 50 percent of data (see Figure A1). The distribution of the stations 

is shown in Fig. 1, which covers three large cities (Tehran, Shiraz, and Tabriz) and six small cities (Birjand, Gilan, Hamedan, 125 
Zanjan, Markazi, and Yazd). Hereafter, the observation datasets and observed ozone are called OBS ad O3OBS, respectively.  

Both reanalysis datasets were co-located with OBS through temporal and spatial interpolations. OBS data are available in 

hourly resolution, in contrast to the CAMS datasets that are available in 3 hourly intervals. To match the frequency of the 

CAMS outputs with OBS, 3 hourly observed values are considered in such a way that at least two hourly values are available; 

otherwise, it renders the value as missing.  130 

3 Methodology 

3.1 Spectral decomposition of the time series 

The presence of various scales of motion, which are caused by several physical and chemical processes, in the time series of 

O3 can complicate the analysis and interpretation of data. As an example, short-term and fast fluctuations in the O3 time series 

are majorly attributed to chemical processes such as NO titration, whereas long-term and seasonal variation is mainly related 135 
to solar radiation. Scale analysis is a method by which the time series can be separated into different temporal terms. Here, the 

time series of O3 is decomposed into three different spectral components, namely short (period less than 2 days), medium 

(period of 2–21 days), and long (periods longer than 21 days) terms, by applying the Kolmogorov-Zurbenko (KZ) technique 

(Rao et al., 1997). KZ is essentially a low-pass filter that consists of repeated moving averages. Its use has been demonstrated 

in earlier studies (Hogrefe et al., 2000; Kang et al., 2013; Seo et al., 2014). A detailed discussion of the KZ filter along with a 140 
comparison to other separation techniques can be found in Eskridge et al. (1997) and Loneck and Zurbenko (2020). KZ requires 

two input parameters, KZ (m, k), where m is the window size for filtering and k is the number of iterations. Since the values 

that have been commonly used for m and k in the literature may not be applicable for 3-hourly data, we selected them based 

on the criteria suggested in Yang and Zurbenko (2010): 

𝑚	 ×	√𝑘 	≤ 𝑝                                                                                                                                                                            (1) 145 
KZ filters out all periods that are less than p, i.e., the number of filtered time intervals. Therefore, three components of interest 

in this study are estimated as follows: 

S = O - KZ (5, 5)                                                                                                                                                                        (2) 

M = KZ (5, 5) – KZ (35, 5)                                                                                                                                                         (3) 

L = KZ (35, 5),                                                                                                                                                                            (4) 150 
where O refers to the original time series and S, M, and L indicate the short, medium, and long terms, respectively. Here, the 

units of O and the spectral terms are in nmol mol-1. 
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3.2 Statistical downscaling 

To bridge the spatial scaling issue between coarse resolution CAMS datasets and local-scale measured data, statistical 

downscaling (SD) methods have been developed (Wilby and Wigley, 1997). SD refers to the use of statistical-based techniques 155 
to determine a relationship between global scale models’ outputs and observed local (small) scale variables (Wilby et al., 2004; 

Wilby and Dawson, 2013). There are numerous SD methods such as linear regression (Sachindra et al., 2013; Beecham et al., 

2014), stochastic weather generators (Wilks, 1999; Kilsby et al., 2007; Semenov and Stratonovitch, 2010), and artificial neural 

networks (Tripathi et al., 2006; Ahmed et al., 2015; Sachindra et al., 2018; Sebbar et al., 2023), to name a few. In this study, a 

deep learning method known as LSTM network was used to analyze the complex relationship between O3 and its precursors. 160 
LSTM is a modified version of a recurrent neural network designed to handle long-term (and short-term) dependencies in 

sequential data (Hochreiter and Schmidhuber 1997). LSTM contains memory cells that can hold (store) information for a long 

time, making them suitable for time series analysis. The standard LSTM consists of three gates as input, forget, and output 

gates for controlling movement of information. We use Keras, a high-level neural network Python library (“Keras: the Python 

Deep Learning library”, Chollet, 2015; https://keras.io) to build and train the LSTM models. This model requires a specific 165 
configuration and tuning to work effectively with the datasets. A range of control values was tested by multiple trial-error 

evaluations using the Scikit function GridSearchCV. The most effective (optimum) hyperparameters are listed in Table A2. 

Several meteorological variables were selected from CAMSRA and CAMSFC products, as listed in Table A3. A cross-

validation Lasso regression was performed to identify the potential predictors. The concentration of O3 is not only affected by 

meteorological factors but also by the influence of the O3 level in the past. A partial autocorrection function was utilized to 170 
estimate the correlation between observed O3 at time T and earlier time steps. For most of the stations, the autocorrelation 

coefficients decrease after a time lag of 24 hours within a confidence interval of 95 %. So, the observed O3 at times T-1,…, 

and T-8 were also considered predictors at each station. Selected predictors and observed O3 were decomposed using Eq. (2), 

(3), and (4). In order to provide the final output, the LSTM architecture was trained on all decomposed datasets. The data 

records were divided into 65 % for the training subset and the rest (35 %) for the validation subset. The best model was chosen 175 
based on the R2 score (coefficient of determination). The selected model was applied to all data records to provide a downscaled 

output. All these procedures are illustrated in Fig. 2. 

3.3 Model evaluation 

We use the mean square error (MSE) as a metric to evaluate the models’ performance. The MSE is defined as the squared 

mean of the difference between modelled (xm) and observed (xo) variables. 180 
This metric can be modified to include all relevant model evaluation indicators, i.e., bias, variance, and correlation, as (Murphy, 

1988; Solazzo and Galmarini, 2016): 

𝑀𝑆𝐸 =	 (𝑥̅! −	𝑥̅"	)# +	(	𝜎! − 𝑟	𝜎")# +	𝜎"#(1 − 𝑟#)                                                                                                                          (5)                                                                                             
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where 𝜎! and 	𝜎" refer to the standard deviation of the modelled and observed data, respectively, and r is the coefficient of 

correlation between the observed and assimilated datasets. In Eq. (5), the first term (hereafter E1) shows the deviation between 185 
average modelled (𝑥̅!) and measured (𝑥̅") datasets and refers to the model accuracy. The second term (hereafter E2) contains 

the variance error, i.e., the discrepancy in amplitude or phase between the variability of the modelled and observed values, that 

determines the precision of the model. Also, the third part (hereafter E3) refers to unsystematic errors related to the associativity 

between observed and assimilated datasets. In other words, the E2 indicates an explained error, which reveals the variance 

error arising from the variability of the modelled variables that are not observed in measurements. The E3 represents an 190 
unexplained error, reflecting the lack of observed variability in the modelled data. Due to the spectral decomposition of the 

data, the S and M components have zero mean fluctuations. Hence, the E1 term in Eq. (5) is zero, and only the E2 and E3 

terms are analyzed below.  

To compare the distribution of error of modeled O3 before and after downscaling, the skill score (SS) is calculated as (Wilks, 

2006) 195 

S𝑆 = 	1 −	
MSE
MSE$%&

 

Here, MSEref and MSE refer to the MSE of O3RA  (or O3FC) and downscaled O3 (O3SD), respectively. The value of SS varies 

between 0 and 1. The value is zero once there is no preference in O3SD with respect to O3RA  (or O3FC), i.e., the O3 variability is 

not explained by selected predictors. The value of SS is one when the MSE of O3SD is zero, which means the whole O3 

variability in the LSTM model is explained by the predictors, i.e., the LSTM model is perfect. 200 

4 Results  

4.1 Spectral components 

The time series of O3 and all meteorological variables for OBS and CAMS datasets decompose into three spectral components, 

short (S), medium (M), and long (L), by applying the method (KZ filter) explained in Sect. 3.1. Figure 3 shows the original 

time series of O3OBS, O3RA, and O3FC and their estimated spectral components at the first station. To clearly see the signals, we 205 
only show part of the time series, here for the summer months (June, July, and August: JJA). Looking at the original 3 hourly 

time series (Fig. 3a), both CAMS datasets overestimate and underestimate ozone during different periods, but it is difficult to 

determine any clear patterns or identify specific reasons for the model bias. The S component contains frequent fast oscillations 

occurring every day with regular maxima and minima (see Fig. 3b). In this figure, the amplitude of S oscillations of the O3RA 

and O3FC is different from that in OBS, indicating differences in the diurnal cycle of observed and simulated ozone mixing 210 
ratios. The M term captures variability on the timescale of synoptic systems. Some episodic events are more visible in the M 

component than in the S component. For instance, in Fig. 3c, the M component of the OBS represents a clear signal of an 

episodic event in the middle of June. This episode is not well captured in CAMSRA while it is captured in CAMSFC. It seems 

that for most of the periods, the variations of the M component in both CAMS datasets are in good agreement with those in 
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OBS, while the amplitudes of oscillations in CAMS do not correspond well with those in OBS. The underestimation and 215 
overestimation of the amplitude (with respect to observations) in CAMSFC is less than that in CAMSRA. Compared to the S 

and M terms, which oscillate around zero, the mean values of the L components are not zero (see Fig. 3d). The L represents 

variations of the ozone mixing ratios on seasonal, semi-seasonal, and multiannual timescales. Comparing the variations of 

CAMSRA and CAMSFC with OBS for L shows more similarity between CAMSFC and OBS than between CAMSRA and 

OBS. Both models exhibit a high bias with respect to the ozone mixing ratios. Nevertheless, the decomposition of the L 220 
component is not reliable due to the limited period (one year) of the available data, so hereafter we only assess the S and M 

components.  

4.2 Variable selections 

The data for 17 relevant meteorological variables was extracted from CAMS products. To avoid model overfitting, we identify 

potential predictors of variables. The relationships between predictors and O3 were estimated by performing LASSO (Least 225 
Absolute Shrinkage and Selection Operator) regression. The variables with high feature importance were considered for use 

in the LSTM modeling. Table 2 lists selected predictors for both components of CAMSRA. At station 1, twelve variables, 

namely, T, V, U10m, V10m, MSLP, SP, T2m, SH, W, CO, NO2, and O3RA, are identified as the potential predictors of the S 

component, while four variables, i.e., U10m, W, SO2, and O3RA, are selected for the M term. Some of the selected predictors 

are common between the S and M components. A few meteorological variables such as T2m, SP, MSLP, W, and U10m (or 230 
V10m) appear for the S component at most of the stations. These variables reflect the information about temperature, pressure, 

and vertical velocity. Temperature is one of the key meteorological factors influencing on the S term variability of O3 through 

its effect on the biogenic emissions, photochemical kinetics reaction rate, and anthropogenic emissions. Stable anticyclones 

and sunny conditions promote O3 formation and accumulation. Zonal and meridional winds at 10 meters are important for the 

dispersion of ozone precursors at local scales. For most of the station, the S term is affected by pollutant species such as O3RA, 235 
NO, and NO2, of which NO and NO2 are recognized as potential drivers of O3 levels. Selection of TCC and FCC for the M 

component at most stations indicates that cloud covers are mostly associated with synoptic systems (e.g., occurrence of high 

pressure systems associated with clear-sky conditions) and O3 variability on this scale. The M component at a few stations, 

e.g., 4, 6, 9, 13, etc., shows weak associations with the parameters, so no variables are selected for them. This situation often 

happens for the M component and suggests the role of other factors (not included in the predictors). Similar to the CAMSRA, 240 
for the CAMSFC the number of selected parameters for the S is larger than that for the M (see Table A4). In CAMSFC, BLH 

and V10m (or U10m) appear as dominant meteorological drivers affecting the S component. The M term is mostly associated 

with O3FC. 

4.3 LSTM model and validation 
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The LSTM model was trained and validated with the datasets, as explained in Sect. 3.2. The model was performed using 245 
several epochs from 1 to 30. The best model was selected based on the R2 score (coefficient of determination), which indicates 

the amount of explained variability by the LSTM model. Figure 4 shows the R2 of the selected model for all data series at each 

station. Their associated epoch numbers are listed in Table A5. For most of the datasets, the R2 is larger than 0.5, indicating 

that more than 50 % of the O3 variability is explained by the LSTM. The R2 for the M component is larger than that for the S 

term, despite the smaller number of predictors for the M. That might reflect that the more predictors, the better the model 250 
would not be. In this figure, the R2 of the M is around 0.9 for all stations, while it varies for the S term. The R2 value of the S 

at the stations over the city of Tehran is within the same range of 0.6 to 0.8. Both CAMSRA and CAMSFC show the R2 less 

than 0.5 for the S term of a few stations, namely 1, 2, 3 (Tabriz), 22 (Yazd), and 24 (Zanjan). A possible reason for that could 

be the peculiar characteristics of short-term ozone variability at these sites or their geographical locations.  

Figure 5 shows the box plots of MSE and different terms of MSE, i.e., E2, E3, for both components of O3SD. For the sake of 255 
simplicity, descriptions of the results are mostly based on the mean values. Nevertheless, the values of the indicators at each 

station are shown as a scatter point next to the box plots.	From Fig. 5a, it turns out that the mean MSE (shown with red squares) 

of O3 for the S component is larger than that for the M component for both models. In other words, there is a better agreement 

between the M components of OBS and CAMS than the S components. That might arise from the larger variability of S than 

M (see Fig. 3). The differences between the mean MSE of CAMSRA and CAMSFC are tiny, so both models show similar 260 
performance. Low values of the MSE for CAMSRA_S and CAMSFC_S are attributed to stations 22 (Yazd), 20 (Hamedan), 

and 24 (Zanjan). On the other hand, the largest value of the MSE is associated with the O3SD of the stations located in the city 

of Tehran. The stations in the northern part of the city (e.g., stations 4, 5, 6, 7, 8, and 9) show larger MSE than the stations in 

the southern part (e.g., stations 11, 12, 14, 15, 16, 17, 18, and 19). The large value of MSE is also found for the S term at the 

stations located in Shiraz and Tabriz, which are known as big and highly populated cities in Iran. Station 2 in Tabriz shows 265 
less MSE than stations 1 and 3, which are located in the industrialized part of the city. Fig. 5b shows the explained error (E2) 

in CAMSRA and CAMSFC for both components. E2 is a model related error, a possible source for this can be a 

misrepresentation of short- and meso-scale phenomena in models. The small values of E2 reflect the low contributions of E2 

to the MSE and the noticeable improvement of the O3SD (via downscaling procedures). The major portions of the MSE are 

associated with the unexplained errors (E3) for both components, see Fig. 5c. The E3 for the S component is larger than that 270 
for M, as expected from the variance of these components. A large value of E3 for the S component can arise from the CAMS’ 

deficiency in resolving the meso-scale phenomena such as local winds, NO titration, and their influences on O3 variability. 

Assessing the element of E3 (see the third term of Eq. (5)) shows that large variances of observations (𝜎") or small correlations 

(r) cause the large E3 and consequently the large MSE. Fig. A2a shows the correlation between the models and observation 

datasets for both components. This figure shows that M contains a larger correlation (r > 0.9) than S in both models. A high 275 
value of correlation between two terms can be attributed to the larger covariance of two terms or the less variance of each term. 

Fig. A2b shows the covariance between models and observations. As can be seen in this figure, the mean value of covariance 

for the S components is larger than the M. So, the smaller correlation of S in comparison to that of M is attributed to the larger 
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variability of S (Fig. A2c). In other words, the better model performance (i.e., smaller E3 and MSE) for the M is not associated 

with the larger covariance of the M component. That is attributed to the less variance of the M than that of the S, see Fig. 3 280 
and Fig. A2c. 

In order to examine the effect of the CAMS products and lagged O3 on the LSTM model, we exclude the lagged ozone from 

the predictors of the LSTM model, hereafter LSTMno_lag. The R2 of the LSTMno_lag is shown in Fig. A3. Overall, the R2 of the 

LSTMno_lag is less than that of the LSTM. This suggests that the LSTMno_lag may carry the risk of not including all important 

predictors (e.g., lagged ozone) in the model. This feature is more noticeable in the M term than the S term, i.e., the R2 of the S 285 
component is less affected by removing the lagged O3. That reflects the CAMS products, which explain more of the S 

variability than that of the M term. In other words, most of the variability of the M term in the LSTM is explained by the 

lagged O3 (not by the CAMS products). That could be a reason for the better performance (less MSE) of the M than the S. 

Figure A4a shows the MSE of the LSTMno_lag. In this figure, the MSE of the datasets increases by two times with respect to 

that of the LSTM. The higher values of the MSE in the LSTMno_lag are attributed to the removal of the lagged O3 from the 290 
model. Although the R2 of the LSTMno_lag for the S is larger than that for the M term, the MSE of the S is higher than that of 

the M term. This is similar to the MSE of the LSTM, which is related to the higher variability of S than M. Similar to the 

LSTM, in LSTMno_lag, the low values of MSE are seen for the S component of O3 at stations 22 (Yazd), 20 (Hamedan), and 24 

(Zanjan). 

The skill score (SS) of the downscaled models O3SD with respect to the O3RA  and O3FC for all datasets are shown in Fig. 6. In 295 
panel (a) of this figure, the mean value of SS for three datasets, namely CAMSRA_S, CAMSRA_M, and CAMSFC_M is 

larger than 0.9. This reflects that the downscaling procedure (LSTM) improves the accuracy of the results in the three 

mentioned datasets. The lower value of the SS for CAMSFC_S can be attributed to the higher skill of the reference dataset, 

i.e., O3FC, or the less accuracy of the LSTM model. The SS of the LSTMno_lag for CAMSRA_S shows the same high accuracy 

as that in the LSTM, whereas for other datasets the mean SS declines to 0.5 (see Fig. 6b). 300 

5 Discussion 

Analysis of the spectral components in this study reveals that the O3 variability in both CAMS prodcuts possesses a nearly 

similar shape (although in different phases and amplitudes) as those in OBS. Results of the models’ performances show a 

larger MSE for the S than that for the M in both CAMS. That arises from the larger variabilities of the S in comparison to the 

M (Hogrefe et al., 2000; Hogrefe et al., 2014; Kaffashzadeh 2018; Kaffashzadeh and Aliakbari Bidokhti, 2022). The results of 305 
error apportionment show the negligible contribution of the E2 to the MSE. E2 arises from the limited spatial resolutions of 

the CAMS in capturing short- and meso-scale phenomena that are attenuated (alleviated) by the SDS procedures. The MSE 

has mostly arisen from the E3, which emphasizes the lack of observed variability in the CAMS data. The E3 assessment shows 

less variability for both components of O3SD than in O3OBS. That could arise from random errors inherent in the OBS data due 

to sub-scale or non-resolvable processes in an observational network. The variability in the measured data might be generated 310 
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from the non-representatives’ errors due to random effects caused by turbulence or sub-scale perturbations (Gandin, 1988; 

Steinacker et al., 2011). It is not straightforward to distinguish and exclude these errors in the measured data because of their 

chaotic and unsystematic behaviors. Adding the lagged O3 to the predictors of the downscaled model halfs the E3 (and MSE). 

Less MSE of the M in comparison to that of the S attributes to not only the less variance of the M than the S but also the larger 

contribution of the lagged O3 in the M than that in the S (as shown in Sect. 4). The S component shows large associations with 315 
meteorological variables such as T2m, BLH, U10m, and V10m and pollutant species such as CO, NO, and NO2. That is due 

to short-term O3 fluctuations associated with processes such as vertical mixing, local NO titration, wind speeds, solar flux, etc. 

The S component shows the large value of MSE for the stations located in Tehran, Shiraz, and Tabriz, which are known as the 

most populated cities (and so large emissions sources) in Iran. The largest MSE belongs to O3 at the stations over Tehran (see 

Fig. A4). That can be partly attributed to the complex topography and local (meso) scale flow (e.g., slope, mountain, and valley 320 
flow) over the city. The pollutant concentrations are highly affected by these factors, which are hardly captured by the global 

chemistry models(Fiore et al., 2003). The MSE of O3 over Tehran in the warm season is much higher than that in the cold 

season (see Fig. A5). That could arise from the uncertainty of O3 precursors in CAMS, as in summer, rising temperatures speed 

up the rate of many reactions and enhance biogenic VOC emissions (Sillman and Samson, 1995). The city of Tehran suffers 

from a high level of emitted NOx from several sources, such as road traffic, industrial activities, the energy conversion sector, 325 
etc. (Hosseini and Shahbazi, 2016; Yousefian et al., 2020). The latest Tehran emission inventory indicates that the annual 

emissions of VOC and NOx are approximately 91 and 103 thousand tons, respectively (Shahbazi et al., 2022). The contributions 

of vehicles to VOCs and NOx emissions are estimated to be 79 % and 35.2 %, respectively. These values increase to 79.5 % 

and 37.2 %, respectively, in the summer. In addition to the aforementioned factors, what distinguishes Tehran from other cities 

is the difference between day and nighttime populations. During the day, traffic in Tehran reaches its highest level due to the 330 
arrival of private vehicles and passenger and cargo transportation vehicles from surrounding areas and cities. This issue has a 

significant impact on the city's traffic and the vehicle traffic on intercity routes leading to Tehran. Since Tehran is the political 

and economic capital of the country, this has resulted in the emergence of urban and industrial areas in the nearby areas of the 

city. For instance, Karaj city, with a population of over 1.6 million, is located 30 km west of Tehran and upstream of the 

prevailing wind direction. So, emitted ozone precursors in urban and industrial areas located around the city can transfer to 335 
Tehran (Shahbazi and Hosseini, 2020). The MSE distribution over Tehran is uneven; the northern part of the city shows a 

larger MSE than that over the southern part. That can be attributed to the uncertainty of the simulated CO species, as it is 

selected as a predictor at the stations located in the northern part. The CO concentration increases, moving from the south to 

the north of Tehran (Sharipour and Aliakbari Bidokhti, 2014).  

The large MSE of O3SD for the cities of Shiraz and Tabriz is mostly associated with the geographical locations of the cities. 340 
Tabriz is the largest economic (industrialized) hub and metropolitan area in northwestern Iran. Numerous cars commuting and 

polluting industries such as thermal power plants and oil refineries in the west of the city are responsible for poor air quality 

over Tabriz. This city is surrounded by mountains and located in the vicinity of the eastern Mediterranean, a well-known region 

of tropopause folding activities that often increase the tropospheric ozone level and variability in summer (Tyrlis et al., 2014; 
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Zanis et al., 2014; Akritidis et al., 2016). Tabriz is often affected by cyclonic activities (Asakereh and Khojasteh, 2021) and 345 
summer circulations over the eastern Mediterranean region (Tyrlis et al., 2013). Although CAMSRA captures the long-range 

transport processes and atmospheric background in the troposphere, it shows a lower skill over the Mediterranean, in particular 

the eastern part, compared to other regions (Errera et al., 2021). Shiraz, as the capital of Fars province, is the largest city with 

more than 1.2 million inhabitants in the southwestern of Iran. This city has a high level of air pollution due to population 

growth, urbanization, and traffic-related emissions. The city is located in a valley between two mountain ranges with east-west 350 
orientations. The model representation of the terrain is considered to be an important key factor for achieving a good 

representation of the wind flow in complex terrain (Mughal et al., 2017). The low MSE values in the cities of Yazd, Hamedan, 

and Zanjan are associated with the station locations, which are less populated and affected by the emissions sources.  

To assess the sensitivity and robustness of the results to SD methods, the data are downscaled using another SD method, 

namely the multiple linear regression (MLR) model. In this model, the predictors and predictand were the same as the LSTM 355 
model. Figure A6b shows the MSE of O3SD with the MLR model. In similarity with the LSTM model (similar to the results in 

Sect. 4), the MSE for the S is larger than the M components downscaled with the MLR model. Although the mean value of 

the MSE of the downscaled data with the MLR is slightly less than that of the LSTM. That could arise from the larger 

correlation (and covariance) between downscaled datasets and OBS in the MLR model. Similar to the LSTM, the SS of the 

MLR is high for all downscaled datasets; the SS for the CAMSFC_S datasets is less than other datasets (see Fig. A7a). 360 

6 Conclusions 

In this paper, the variability of O3 in two datasets, namely CMASRA and CAMSFC, was assessed against observations at 27 

urban stations distributed over Iran. To cope with the limited spatial resolutions of CAMS, the data were downscaled using an 

LSTM neural network. The most relevant peroxides were found by screening several meteorological variables and chemical 

species. We decomposed all datasets into three spectral components, i.e., short (S), medium (M), and long (L) terms. The S 365 
term consists of intraday and diurnal variations; the M term includes synoptic multiday fluctuations; and the other motions, 

i.e., seasonal, semi-seasonal, and trend, are carried in the L. We only assessed the S and M terms due to the availability of one-

year data, i.e., 2020; the L component is primarily used to check the biases between model data and observations but should 

not be considered reliable with respect to trend analysis, etc. Since S and M components have zero-mean fluctuations, the bias 

term (distance between the time average of model data and observations) is zero, and the main focus of this study was to 370 
analyze the variability terms, e.g., variance and covariance. The results presented in this study reveal several key points:  

(1) Various variables were identified as potential predictors of ozone. The S term shows high associations with temperature, 

10 m wind components, and NOx, while the M component shows higher associations with cloud cover and simulated ozone. 

In CAMSFC, boundary layer height appears to be the dominant meteorological driver of the S component. The R2 of the LSTM 

model for the M component is larger than that for the S term, despite a smaller number of predictors for M than for S. That 375 
might reflect that more predictors would not imply a better model. 
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(2) The SS of the downscaled CAMSFC_S is lower than other datasets. This can be attributed to the higher skill of the reference 

dataset, i.e., O3FC. The SS of the LSTMno_lag for CAMSRA_S shows the same high accuracy as LSTM, whereas for other 

datasets the mean SS declines to 0.5. The robustness of the results was confirmed using additional downscaling procedures, 

i.e., MLR.  380 
(3) Both datasets, i.e., CAMSRA and CAMSFC, show less MSE for the M component than for the S term. That is mainly 

attributed to the low variability of M and is not related to the large covariance of this component. The MSE was mainly 

associated with unexplained model errors (E3), which could be caused by the CAMS deficiency in resolving the mesoscale 

phenomena such as local winds, NO titration, and their impact on O3 variability. 

(4) In both datasets, the highest MSE belongs to O3SD at stations over Tehran in the warm season. That arises from the 385 
uncertainty of O3 precursors, e.g., NOx, in CAMS. This can be considered a starting point for improving the results of 

tropospheric ozone, in particular at urban sites. 
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Table 1. An overview of some similarities and differences between the CAMSRA and CAMSFC datasets used in this study 
 670 

Name (references) CAMSRA (Innes et al., 
2019) 

CAMSFC (Basart et al., 2019; 
Haiden et al., 2019; 

Sudarchikova et al., 2021) 
 

Temporal coverage 2003 to 2021 2015 to present  

Assimilation system IFS Cycle 42r1 4D-Var 

 
IFS Cycle 46r1 (implemented on 

9 July 2019) 
IFS Cycle 47r1 (implemented in 

6 October 2020) 
 

 

Horizontal resolution 0.75°x0.75° (T255)  
 

0.4°x0.4° (T511) 
 

 

Vertical resolution L60 Up to 0.1 hPa 
 

L137 up to 0.01 hPa 
 

 

Temporal resolution 
(output frequency) 3 hourly 

 
1 hourly (single level),  
3 hourly (multi-level) 

 

Anthropogenic emissions MACCity 

 
CAMS_GLOB_ANT v2.1 

(cy46r1) 
CAMS_GLOB_ANT v4.2 

(cy47r1) 

 

Biomass burning 
emissions GFASv1.2 

 
GFASv1.2 (cy46r1) 
GFASv1.4 (cy47r1) 

 

 

Biogenic emissions MEGAN CAMS_GLOB_BIO v1.1 
  

 
Chemistry modules 

 
modified CB05 

modified CB05 with a few 
upgrades such as dry depositions 
velocity, coupling with aerosol 

scheme, etc. 

 

 
Input meteorological 

observations 
 

As in ERA5 As in ERA5  
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Figure 1. Geographical location and distribution of the measured air quality stations used in this study. The purple box areas 
correspond to the locations of the cities. Here the stations are represented with a number, details on the name and geographical 
coordinates of the stations are given in Table A1. The arrows refer to the stations, which are overlaid on the cities’ maps of Tabriz, 675 
Tehran, and Shiraz (Fars). 
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Figure 2. A schematic of the downscaling processes: (a) input data retrieval, (b) decomposition and prescreening, (c) LSTM 
modeling, and (d) downscaled datasets.  680 
 

 
Figure 3. Different spectral components, i.e., (a) original time series, (b) short (S), (c) medium (M), and (d) long term (L) of O3

OBS 
(black), O3

RA (red), and O3
FC (blue) at station 1. The vertical axis in all panels shows the ozone mixing ratio in nmol mol-1. 

https://doi.org/10.5194/gmd-2023-226
Preprint. Discussion started: 2 January 2024
c© Author(s) 2024. CC BY 4.0 License.



25 
 

 685 
 

Table 2. The most important explanatory variables of the CAMSRA at each station  

Stations’ 
number S M 

1 T, V, U10m, V10m, MSLP, SP, T2m, SH, W, 
CO, NO2, O3RA U10m, W, CO, O3RA 

2 MSLP, SP, T2m, SH, W, NO2, O3RA U10m, SP, SO2, O3RA 

3 T, MSLP, SP, T2m, CO, SO2, NO2, O3RA T, U, DT2m, W, NO2, O3RA 

4 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2, O3RA - 

5 U, U10m, MSLP, SP, T2m, W, CO, NO, NO2, 
O3RA T2m 

6 U, V, U10m, V10m, MSLP, SP, T2m, SH, 
CO, NO - 

7 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2 U, T2m 

8 U, U10m, MSLP, SP, T2m, SH, W, CO, NO, 
NO2, O3RA TCC, T2m 

9 T, U, V, U10m, V10m, MSLP, SP, T2m, SH, 
W, CO, NO, NO2 - 

10 T, U, U10m, MSLP, SP, T2m, W, NO, O3RA 
TCC, FCC, U, V, U10m, V10m, MSLP, 

SP, T2m, DT2m, SH, SO2, NO, NO2, 
O3RA 

11 U, U10m, MSLP, SP, T2m, W, CO, NO, NO2, 
O3RA  TCC, FCC, U, W 

12 T, U, U10m, MSLP, SP, T2m, W, NO, NO2, 
O3RA  TCC 

13 MSLP, SP, T2m, SH, W, NO, O3RA  - 

14 T, U, U10m, MSLP, SP, T2m, SH, W, NO, 
O3RA TCC, FCC, T2m, DT2m, SO2, O3RA 

15 U, U10m, MSLP, SP, T2m, W, NO, O3RA  TCC, U 

16 MSLP, SP, T2m, W, NO, O3RA  T, U, SP, W, O3RA  

17 T2m, O3RA - 

18 T2m, SH, W, NO, O3RA  TCC, FCC, DT2m, W, O3m 

19 T, V10m, T2m, W, NO, O3RA  TCC, FCC, V10m 

20 T, V, V10m, SP, T2m, SH, NO2, O3RA TCC, SP, T2m, W, NO2, O3RA 

21 T, V10m, T2m,W, CO, O3RA  CC, U, SP, SH, W, SO2, O3RA  
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22 T, V10m, MSLP, SP, T2m, W, O3RA  TCC, FCC, U, V10m, MSLP, SP, SH, 
O3RA 

23 T, T2m, DT2m, W, O3RA  Q 

24 T2m, O3RA - 

25 - DT2m, CO 

26 T, V, V10m, MSLP, SP, T2m, CO, O3RA  - 

27 T, V, U10m, V10m, MSLP, SP, T2m, CO - 

 
 
 690 

 
Figure 4. The R2 of the LSTM model for both S and M components of O3. In this figure, CAMSRA_S and CAMSFC_S refer to the 
S components of CAMSRA and CAMSFC, respectively. Likewise, CAMSRA_M and CAMSFC_M refer to the M component of 
CAMSRA and CAMSFC, respectively. 
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Figure 5. The (a) MSE, (b) E2, and (c) E3 of the downscaled O3RA and O3FC with LSTM for both S and M components. In this figure, 
CAMSRA_S and CAMSFC_S refer to the S components of CAMSRA and CAMSFC, respectively. Likewise, CAMSRA_M and 700 
CAMSFC_M refer to the M component of CAMSRA and CAMSFC, respectively. 
 

 
Figure 6. The SS of the downscaled O3RA and O3FC with (a) LSTM and (b) LSTMno_lag 
 705 
  
 
 
 
 710 
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Appendix A 715 
 
Table A1. The stations’ names and their geographical locations 
 

Number Name Latitude Longitude Number Name Latitude Longitude 

1 Abresan 
(Tabriz) 38.066 46.326 15 Shad abad 

(Tehran) 35.67 51.297 

2 
Namaz 
square 

(Tabriz) 
38.079 46.289 16 Mahallati 

(Tehran) 35.661 51.466 

3 
Azarbayej
an square 
(Tabriz) 

38.112 46.276 17 District 19 
(Tehran) 35.635 51.362 

4 
Aqdasiye

h 
(Tehran) 

35.795 51.484 18 Masoudieh 
(Tehran) 35.63 51.499 

5 Sadr 
(Tehran) 35.778 51.429 19 Ray (Tehran) 35.604 51.426 

6 District 2 
(Tehran) 35.777 51.368 20 Hamedan 

(Hamedan) 34.8 48.5 

7 Punak 
(Tehran) 35.762 51.332 21 

Birjand 
(Khorasan 
Jonoubi) 

32.87 59.21 

8 
Geophysi

cs 
(Tehran) 

35.74 51.385 22 Yazd manabe 
tabiei (Yazd) 31.93 54.37 

9 
Setad 

bohran 
(Tehran) 

35.727 51.431 23 Rasht (Gilan) 37.29 49.61 

10 
Tarbiat 

Modares 
(Tehran) 

35.717 51.386 24 Zanjan ark 
(Zanjan) 36.67 48.48 

11 
Sharif 

university 
(Tehran) 

35.702 51.351 25 Mirzaye shirazi 
(Markazi) 34.09 49.7 

12 
District 

21 
(Tehran) 

35.698 51.243 26 Kazeroon gate 
(Shiraz) 29.61 52.53 

13 Piroozi 
(Tehran) 35.696 51.494 27 Imam Hossein 

square (Shiraz) 29.62 52.54 

14 Fath 
square 35.679 51.337     

 
 720 
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Figure A1. Data coverage (per month) of the hourly surface-based measured ozone at five air quality monitoring stations 
 
 
Table A2. The hyperparameter settings of the LSTM model 725 
 

hyperparameter values 

Train portion 65 % 
Test  portion 35 % 

Epoch  1…30 
Batch size 72 
Optimizer ADAM 

Loss function MSE 
 
 
 
 730 
Table A3. A list of the meteorological variables that were extracted from CAMS data prodcuts. ⊕	and ⊖  present available and 
unavailable variables, respectively.  
 

Meteorological 
variable  
(symbol) 

Units Definition CAMSRA CAMSFC 

T °K Temperature ⊕ ⊕ 
T2m °K 2 meter temperature ⊕ ⊕ 
SST °K Sea surface temperature ⊖ ⊕ 

DT2m °K 2 metre dewpoint temperature ⊕ ⊕ 
SH kg kg-1 Specific humidity ⊕ ⊕ 
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U m s-1 U component of wind ⊕ ⊕ 
V m s-1 V component of wind ⊕ ⊕ 

U10m m s-1 10 meter U wind component ⊕ ⊕ 
V10m m s-1 10 meter V wind component ⊕ ⊕ 

W Pa s-1 Vertical velocity ⊕ ⊕ 
BLH m Boundary layer height ⊖ ⊕ 
SP Pa Surface pressure ⊕ ⊕ 

MSLP Pa Mean sea level pressure ⊕ ⊖ 
TCC % Total cloud cover ⊕ ⊕ 
FCC % Fraction of cloud cover ⊕ ⊕ 
UV J m-2 Downward UV radiation at the surface ⊖ ⊕ 
SD s Sunshine duration ⊖ ⊕ 

 
 735 
 
Table A4. As Table 2, but for CAMSFC datasets. 
 

Stations’ 
number S M 

1 DT2m, BLH, U10m, W, T, SH, NO2, NOx, CO U, O3FC 

2 BLH, W, T, U U, SP, O3FC 

3 BLH, T2m, U10m, W, T, U, O3FC T, U, O3FC 

4 BLH, V10m, V, O3FC - 

5 V10m, O3FC  O3FC 

6 BLH, U10m, V10m, T, U, V, SP,  O3FC SST, SD 

7 BLH, T2m, V10m, W, T, V, SO2,  O3FC  O3FC 

8 BLH, V10m, W, T, V, O3FC SD, U, O3FC 

9 BLH, T2m, V10m, W, T, V, NO, SO2, CO,  
O3FC - 

10 V10m, O3FC BLH, T, O3FC 

11 BLH, V10m, W, V, O3FC SST, SD, O3FC 

12 BLH, V10m, O3FC  O3FC 

13 BLH, V10m, T, V, O3FC  O3FC 

14 BLH, V10m, V, SP, NOx, SO2, CO, O3FC DT2m, V10m, O3FC 

https://doi.org/10.5194/gmd-2023-226
Preprint. Discussion started: 2 January 2024
c© Author(s) 2024. CC BY 4.0 License.



31 
 

15 T2m, V10m, O3FC SD, BLH, O3FC 

16 BLH, U10m, V10m, T, V, O3FC DT2m, SST, BLH, T2m, U10m, V10m, 
W, T, U, V, SH, SP, NO, SO2, CO, O3FC 

17 T2m, O3FC BLH, V10m, O3FC 

18 BLH, V10m, W, T, V, NO, O3FC SD, T2m, U10m, V10mWu, V, NO2, 
NO, NOx, SO2, CO, O3FC  

19 BLH, V10m, O3FC  TCC, O3FC  

20 DT2m, BLH, T2m, U10m, T, U, SH, O3FC TCC, BLH, W, Q, SP, O3FC  

21 BLH, V, SO2 BLH, T, SP, SO2, CO, O3FC  

22 DT2m, SD, BLH, T2m, U10m, V10m, W, T, 
U, V, SH, SP, NO2, CO, O3FC  BLH, U10m, SH, SP, SO2 

23 U10m, O3FC Q 

24 T2m, O3FC - 

25 BLH DT2m, SST, BLH, O3FC  

26 BLH - 

27 SP - 
 
 740 
 
Table A5. The optimum epoch number to perform the LSTM model 
 

models CAMSRA CAMSFC 

Stations’ number S M S M 

1 27 26 28 26 

2 26 26 29 26 

3 27 20 27 26 

4 26 - 26 - 

5 27 25 26 26 

6 27 - 26 26 

7 27 26 28 26 

8 27 26 26 26 
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9 30 - 27 - 

10 30 22 30 26 

11 27 26 27 26 

12 27 25 26 26 

13 27 - 30 26 

14 27 26 26 26 

15 28 26 26 27 

16 26 26 25 26 

17 26 - 26 26 

18 30 26 27 26 

19 26 26 26 26 

20 26 26 28 26 

21 26 27 26 26 

22 26 28 27 26 

23 30 26 26 26 

24 7 - 7 - 

25 - 26 25 24 

26 26 - 25 - 

27 27 - 25 - 
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Figure A2. The (a) correlation (r), (b) covariance (cov), and (c) variance (var) of the O3

SD with LSTM.  750 
 
 

 
Figure A3. As Fig. 4, but for the LSTMno_lag model. 
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Figure 
A4. The MSE of the O3

SD at the stations (excluding the stations over Tehran city) for (a) the cold {months = 1 to 3, and 10 to 12} 
and (b) the warm {months = 4 to 9} seasons, respectively. 760 

 

 
Figure A5. The MSE of the O3

SD at the stations over Tehran for (a) the cold {months = 1 to 3, and 10 to 12} and (b) the warm 
{months = 4 to 9} seasons. 
 765 
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 770 
Figure A6. The MSE of the O3

SD by the (a) LSTMno_lag, (b) MLR, and (c) MLRno_lag models 
 
 

 
Figure A7. As Fig. 6 but for the downscaled data with (a) MLR and (b) MLRno_lag models. 775 
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